82) Journal of Materials Research and TechnologyОткрытый доступ

2019

Effect of the PEN/C surface layer modification on the microstructure, mechanical and tribological properties of the 30 CrMnSiA mild-carbon steel

(Статьи еще не опубликованы, но доступны в Интернете Статья в печати О статьях в печати (откроется новое окно))

(Открытый доступ)

Zhurerova, L.G.a, Rakhadilov, B.K.b, Popova, N.A.c, Kylyshkanov, M.K.d, Buranich, V.V.e, Pogrebnjak, A.D.a, e View Correspondence (jump link)

aD. Serikbaev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan

bSarsen Amanzholov East-Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan

cTomsk State Architecture and Construction University, Tomsk, Russia

Просмотр дополнительных организаций

Краткое описание

As result of plasma-electrolytic nitrocarburizing 30CrMnSiA carbon steel (ferrite-perlitegrade), there was a change in the elemental and phase composition, as well as the sur-face layer microstructure ($40 \div 45$ microns thick from the surface). A formation of Me23(CN)6 carbonitrides, FeN nitrides, Fe3C - (Fe,Cr)3C carbides and an increase in dislocation densitywithin α -phase (tempered martensite crystallites), high-temperature lamellar martensitewere observed. As a result of PEN / C exposure for 7 min. at 750°C there is a reduction offriction coefficient and wear rate, what is connected with finely dispersed secondary phasesFeN, (Fe, Cr)3C, Me23(C, N)6 formation. Thus there is an 2,5 \div 3,3 times increase in hardnessof 30CrMnSiA carbon steel samples. © 2019 The Authors.